Complex bud architecture and cell‐specific chemical patterns enable supercooling of Picea abies bud primordia

نویسندگان

  • Edith Kuprian
  • Caspar Munkler
  • Anna Resnyak
  • Sonja Zimmermann
  • Tan D Tuong
  • Notburga Gierlinger
  • Thomas Müller
  • David P Livingston
  • Gilbert Neuner
چکیده

Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to -50 °C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D-reconstruction, supercooling and freezing patterns by infrared video thermography, freeze dehydration and extraorgan freezing by water potential measurements, and cell-specific chemical patterns by Raman microscopy and mass spectrometry imaging. A bowl-like ice barrier tissue insulates primordia from entrance by intrinsic ice. Water repellent and densely packed bud scales prevent extrinsic ice penetration. At -18 °C, break-down of supercooling was triggered by intrinsic ice nucleators whereas the ice barrier remained active. Temperature-dependent freeze dehydration (-0.1 MPa K-1 ) caused accumulation of extraorgan ice masses that by rupture of the shoot, pith tissue are accommodated in large voids. The barrier tissue has exceptionally pectin-rich cell walls and intercellular spaces, and the cell lumina were lined or filled with proteins, especially near the primordium. Primordial cells close to the barrier accumulate di, tri and tetrasaccharides. Bud architecture efficiently prevents ice penetration, but ice nucleators become active inside the primordium below a temperature threshold. Biochemical patterns indicate a complex cellular interplay enabling supercooling and the necessity for cell-specific biochemical analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supercooling characteristics of isolated peach flower bud primordia.

The amount of unfrozen water in dormant peach (Prunus persica [L.] Batsch, cv Redhaven) flower buds, isolated primordia, and bud axes was determined during freezing using pulse nuclear magnetic resonance methods. Differential thermal analysis studies were conducted on whole buds and isolated primordia in the presence of ice nucleation. The results showed that some of the water in isolated primo...

متن کامل

Scanning Electron Microscopic Study on Freezing Behaviour of Tissue Cells in Dormant Bud of Mulberry (morus Sp.)

The freezing behaviour studies of dormant buds, were examined, employing scanning electron microscopy (SEM) and light microscopy. The differences and effect of freezing behaviour on dormant buds were observed. The dormant bud primordia of several woody plant species avoid freezing injury by deep supercooling. By slow cooling (5C/day) of dormant buds to –30C, all living cells in bud tissues exhi...

متن کامل

Effect of bud burst forcing on transcript expression of selected genes in needles of Norway spruce during autumn.

Expression of selected genes in needles of Norway spruce (Picea abies [L.] Karst) was investigated by following their transcription levels during late autumn. Transcription was assessed in mature needles which likely serve as sensor of environmental cues that enable trees in the temperate and boreal regions to change between stages of growth, frost tolerance and bud dormancy. Samples were colle...

متن کامل

Metabolite changes in conifer buds and needles during forced bud break in Norway spruce (Picea abies) and European silver fir (Abies alba)

Environmental changes such as early spring and warm spells induce bud burst and photosynthetic processes in cold-acclimated coniferous trees and consequently, cellular metabolism in overwintering needles and buds. The purpose of the study was to examine metabolism in conifers under forced deacclimation (artificially induced spring) by exposing shoots of Picea abies (boreal species) and Abies al...

متن کامل

Development in Norway Spruce, Picea abies'

A pulse-treatment of embryos of Picea abies (L.) Karst with cytokinin efficiently and reproducibly induces the coordinate de novo formation of bud primordia from subepidermal cells. The cytokinin treatment also affects the germinative development of the embryo; chloroplast maturation is delayed, and cell elongation is completely suppressed. We have analyzed the protein patterns in developing sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2017